254. Organic Phosphorus Compounds. Part 64 Synthesis of 4, 6-Dimethylamino-2-cyclohexyl-2H-1, 3, 5, 2-P^vthiadiazaphosphorin-2-thione¹)

by Ludwig Maier

Monsanto Research S.A., Eggbühlstrasse 36, CH-8050 Zürich, Switzerland

(27. VIII. 73)

Summary. In the reaction of cyclohexylmonothiophosphonic anhydride, $[C_6H_{11}P(S)O]_3$, with dimethylcyanamide not the expected 2H-1, 3, 5, 2-PV-thiadiazaphosphorin-2-oxide derivative is formed, but the corresponding thione derivative, the title compound, is obtained.

Recently we have reported a convenient method for the preparation of monothiophosphonic anhydrides (I) by the interaction of phosphonic dichlorides with H_2S in benzene solution in the presence of Et_3N [2]:

$$3 \operatorname{RP}(O)\operatorname{Cl}_2 + 3 \operatorname{H}_2 S \xrightarrow{6 \operatorname{Et}_3 N} [\operatorname{RP}(S)O]_3 + 6 \operatorname{Et}_3 N \cdot \operatorname{HCl} I$$

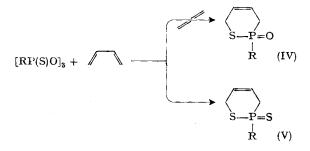
We also have described the reactions of I with alcohols, water, secondary amines, and PCl_{5} .

Now we report on the reaction of dialkylcyanamides with I. In analogy to the reaction of dimeric thionophosphine sulfides, $(\text{RPS}_2)_2$, with dialkylcyanamides which yield 2*H*-1,3,5,2-P^v-thiadiazaphosphorin-2-thione derivatives (II) [3]:

$$0.5 \ [RPS_2]_2 + 2 \ R_2^{(N)} = N \longrightarrow R_2^{(N)} R_2^{(N)} R_2^{(N)}$$

we expected to obatin from I and dialkylcyanamides 4,6-dialkylamino-2H-1,3, 5,2-P^v-thiadiazaphosphorin-2-oxides (III):

$$\frac{R_{2}N}{N}$$


$$1/3 [RP(S)O]_{3} + 2 R_{2}'NC \equiv N \longrightarrow R_{2}'N - R_{$$

Interaction of $[RP(S)O]_3$, $R = cyclo-C_6H_{11}$, with dimethylcyanamide did, however, not yield III ($R = C_6H_{11}$, $R' = CH_3$); instead II ($R = cyclo-C_6H_{11}$, $R' = CH_3$) was obtained. One therefore has to assume that I either disproportionates with the formation of sulfur reach fragments which then react with cyanamides, or that first an addition

¹) Part 63, see [1].

of cyanamide to the exocyclic P=S bond occurs and that this product interacts with excess I with exchange of S for O to give II.

A similar situation obtains in the reaction of I with dienes [4]. Here also not the expected tetrahydro-1,2-thiaphosphorin-2-oxides (IV) are formed, but tetrahydro-1,2-thiaphosphorin-2-thiones (V) are obtained [4].

Compound II is a white, high melting solid, m.p. 229–234° which shows in the ¹H-NMR. spectrum a broad signal for $C_{6}H_{11}$ and a singlet for $(CH_{3})_{2}N$. As expected it shows in the ³¹P-NMR. spectrum only one signal at -73.5 ppm which is in line with the shift of similar compounds, *e.g.*, for II, $R=R'=C_{2}H_{5}$ a ³¹P-chemical shift of -68.5 ppm has been reported [4].

The IR. spectrum shows bands for C=N at 1630 and 1560, C-N at 1105, and P-N at 773 $[cm^{-1}]$, but no band for P=O.

The mass spectrum yields in addition to the molecular ion peak m/e = 318, a fragmentation pattern which indicates that first cyclohexene is lost to give a P-H bond; this intermediate then loses HS and then the ring fragments into the pieces PS₂, PS, (CH₃)₂NCNH, HCN etc. as indicated in the table below.

Z	m/e	intensity	Z	m e	intensity
M+	318	23	[PS ₂]+	95	12.6
[<i>M</i> C ₆ H ₁₀]+	236	36.8	[PS]+	63	17.2
$[M - C_6 H_{11}]^+$	235	3.6	$[(CH_3)_2NCNH]^+$	71	35.6
$[M - C_{6}H_{11} - S]^{+}$	203	100	$[(CH_3)_2NCH]^+$	55	20.7
$[M - C_6 H_{11} - (CH_3)_2 NCN]^+$	1 65	41.4	[HCN ₂]+	41	20.7
$[M - C_6 H_{11} - S - (CH_3)_2 NCN]^+$	133	23	[HCN]+	27	6.9
		{	[CH ₃]+	15	1.1

Fragmentation of II in the mass spectrum at 12 and 70 eV

Experimental Part²)

(with Miss H. Benz)

4,6-Dimethylamino-2-cyclohexyl-2H-1,3,5,2-PV-thiadiazaphosphorin-2-thione (II, $R = C_6H_{11}$, $R' = CH_3$).

A mixture of 4.86 g (0.01 mol) of $[C_6H_{11}P(S)O]_3$ and 4.2 g (0.06 mol) of dimethylcyanamide was heated for 20 min to 110–130°. A yellowbrown colored solution was formed. On cooling the reaction mixture crystallized. The crystals were dissolved in 50 ml benzene under reflux and then

²) Microanalyses were carried out by W. Manser/ETH Zürich. ³¹P- and ¹H-NMR. spectra were run on an HA 60 IL Varian spectrometer using H_3PO_4 or TMS as reference.

the solution cooled to 10° . A yellow powder precipitated (1.2 g) which was suspended in hot ethanol and filtered when cold to give 0.9 g of II, a white powder, m.p. $229-234^{\circ}$.

¹H-NMR. (in CDCl₃): C₆H₁₁ at 0.9–2.35 ppm (m, 11.1 H), CH₃ at 3.11 (s, 11.9 H); ³¹P-73.5 ppm (in CHCl₃).

IR. (in KBr) bands for: CH_3CH_2 at 2800, 2970; C=N at 1630, 1560; C-N at 1105; P-N at 773 [cm⁻¹].

 $\begin{array}{c} C_{12}H_{23}N_4PS_2 \mbox{(318.4)} & \mbox{Calc. C 45.26} & \mbox{H 7.28} & \mbox{N 17.59} & \mbox{P 9.72} & \mbox{S 20.13\%} \\ & \mbox{Found C 45.31} & \mbox{H 7.21} & \mbox{N 17.46} & \mbox{P 9.60} & \mbox{S 20.04\%} \\ & \mbox{Mol. weight: 318} \mbox{(mass spectroscopically)} \end{array}$

REFERENCES

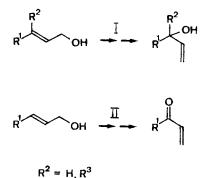
[1] L. Maier, Synthesis Inorg. Metal-org. Chem., in press.

[2] J. J. Daly, L. Maier & F. Sanz, Helv. 55, 1991 (1972).

[3] A. Schmidpeter & N. Schindler, Angew. Chem. 80, 1030 (1968). Ger. Offen. 1 911 329 (1970).

[4] A. Ecker & U. Schmidt, Mh. Chem. 103, 736 (1972).

255. Controlled Allylic Transformations via the Meisenheimer Rearrangement


by Valentin Rautenstrauch

Firmenich SA, Research Laboratory, 1211 Geneva 8

(31. VIII. 73)

Summary. Described are synthetic sequences which effect allylic transformations I and II. Sequence I involves (1) conversion of a primary allyl alcohol into the corresponding N, N-dimethylamine oxide, (2) [2,3]-rearrangement to give an N, N-dimethylhydroxylamine and (3a) reduction to give the 'rearranged' secondary or tertiary allyl alcohol [e.g. $36 \rightarrow 35 \rightarrow 37 \rightarrow 40$]. Sequence II involves the same steps (1) and (2), followed by (3b) N-methylation of a secondary N, N-dimethylhydroxylamine and (4) Hofmann elimination to give a vinyl ketone [e.g. $11 \rightarrow 12 \rightarrow 13 \rightarrow 14 \rightarrow 15$].

Introduction. – In one approach to the problem of converting the ionones into the isomeric damascones¹), we have found synthetic sequences which are based on the *Meisenheimer* rearrangement and which effect allylic transformations of the general

¹⁾ For a discussion of this problem, see ref. [1] [2].